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A computer simulation is used to make a detailed study of the stress tensor in a 
simple shear flow of two-dimensional disks. The stresses are shown to arise from 
two momentum-transfer mechanisms : the ‘streaming ’ or kinetic mode, by which 
momentum is carried by particles as they move through the bulk material; and the 
collisional mode, by which momentum is transferred from one point to another in 
the material by interparticle collisions. As might be expected, the results show that 
the streaming mode dominates a t  disperse packings and the collisional mode 
dominates at  dense packings. The friction coefficient, the ratio of shear to normal 
forces, is shown to decrease at high particle packing for both the collisional and 
streaming modes of transport. Normal-stress differences are observed within the 
shear plane and are evident in both the streaming and collisional parts. 

1. Introduction 
The many unexplained problems found in industrial processes that must handle 

granular materials have prompted a great body of both theoretical and experimental 
work. As the research continues, the complexity of the physical processes involved 
are becoming more and more apparent. Most studies have concentrated on two 
limiting flow regimes. Slow deformations of granular assemblies generally do not flow 
as individual particles, but as groups of particles yielding along slip lines. Such flows 
are often described by methods derived from metal-plasticity theory and fall into the 
‘ quasi-static ’ flow regime. The current state of knowledge has been recently reviewed 
by Spencer (1981) and Mroz (1980). At the opposite extreme is the ‘rapid-flow’ or 
‘grain-inertia’ regime, reviewed by Savage (1984). This is best thought of as any flow 
in which the particle interactions can be described as instantaneous collisions. The 
present work is directed towards understanding of the latter flow regime. 

The pioneering work on the constitutive properties of granular flows was performed 
by Bagnold (1954). He studied suspensions of wax spheres in a glycerin-water-alcohol 
mixture sheared in a Couette shear cell and showed that, at even moderate 
concentrations and shear rates, the composite ceases to behave like a Newtonian fluid 
with a corrected viscosity and adopts the behaviour 

where T; is the stress tensor, pp is the density of the solid material, f i j  is a tensor-valued 
function of the solid fraction v (v = p/pp is the fraction of a unit volume that is 
occupied by solid), R is the particle radius, and duldy is the local velocity gradient. 
This rule has been confirmed for dry granular materials by Savage & Sayed (1984), 
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Hanes (1983), Hanes & Inman 1985), and by the fluid-free computer simulation of 
Campbell & Brennen (1985~) .  In facat, this behaviour may be anticipated from a 
simple dimensional analysis. As such, it is not surprising that all theoretical analyses, 
starting with the heuristic arguments of Bagnold (1954) and continuing through the 
progressively more sophisticated work of McTigue (1978), Kanatani (1979a, b, 1980), 
Ackermann & Shen (1979), Ogawa & Oshima (1977), and Oshima (1978,1980), have 
shown similar behaviour. The most comprehensive studies along these lines, described 
in Savage & Jeffrey (1981), Jenkins & Savage (1983), Lun et al. (1984) and Lun & 
Savage (1985), are derived from Enskog’s dense-gas model (see Chapman & Cowling 
1970). However, the work of Campbell & Brennen (1985a, b)  indicates that simple 
shear flows may represent an anomalously simple case of granular flow and that (1.1) 
may not be universally valid. A similar conclusion can be drawn from Jenkins & 
Savage (1983), Lun et al. (1984) and Lun & Savage (1985), although no demonstration 
is presented. 

The primary obstacle to  understanding granular flows is the almost total lack of 
adequate experimental techniques and instrumentation. For example, the Couette- 
shear-cell experiments, that  constitutc the only experimental support of (1.l);only 
report measurements of two of the nine components of the stress tensor : T&, the shear 
stress and T&,, the normal stress, on the cell walls. No measurements have been made 
of the other stress-tensor components, although Savage (1979) has presented a 
heuristic demonstration of stress generation normal to  the shear plane. 

While the bulk mechanics of a granular material are a slowly unfolding mystery, 
the mechanisms of particle interaction : collisions, surface friction, elastic deformation, 
etc. are all well established. Around these basic interactions, computer simulations 
can be build that follow the individual trajectories of the constituent particles and 
accurately describe the behaviour of the bulk material. Such simulations have been 
constructed by Campbell (1982), Campbell & Brennen (1985a, b ) ,  Walton (1980, 
1982a, b )  and Cundall (1974), and have proven to  be useful investigative tools for 
granular-material flows. I n  a computer simulation, everything is known about the 
simulated system so that any information can be found by statistical averaging. The 
purpose of the present investigation is to use a computer simulation to make a 
detailed study of the stress tensor in a Couette flow of granular material. 

2. Computer simulation 
The simulation used here differs only slightly from that described fully in Campbell 

(1982) and to a lesser extent in Campbell & Brennen (1985a, b) ,  and so will be even 
more briefly described here. 

Throughout the simulation, the particles (of mass m and radius R) are confined 
within a control volume such as that shown schematically in figure 1. To simulate 
a Couette flow, both the top and bot,tom of the control volume are closed by solid 
boundaries. The solid walls are separatcd by a distance H and the upper wall is given 
a velocity U in the x-direction relative to the bottom wall. The sides of the control 
volume are bounded by ‘periodic’ boundaries; as a particle passes through one 
periodic boundary i t  re-enters the other with exactly the same position and relative 
velocity with which it left. This type of boundary gets its name because it emulates 
a situation in which the entire control volume is periodically repeated infinitely many 
times upstream and downstream. This setup greatly enhances the computational 
efficiency of the simulation by limiting the number of particles to  those initially placed 
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FIGURE I .  Schematic of the Couette-flow simulation. 

in the control volume. (All of the current work was performed on control volumes 
of eighty particles.) It has the drawback that i t  is only applicable to flows with no 
gradients in the flow direction (i.e. steady, unidirectional flows). 

After the initial conditions are set, the simulation is allowed to proceed until it 
converges to a steady state. Attainment of a converged state must be determined 
from some instantaneously observable parameters. For these Couette-flow simulations, 
a converged state was assumed to occur when the total system kinetic energy and 
the solid-wall spacing H achieve nearly constant values. The determination of 
convergence is hindered because both parameters fluctuate slightly. For most of the 
calculations, convergence was achieved after as little as 500 collisions per particle 
from the initial state. After convergence is obtained, properties are averaged over 
long periods of time (up to 3000 collisions per particle). 

Each particle collision is assumed to occur instantaneously once the particle 
surfaces come into contact. (This is essentially the hard-sphere approximation often 
used in the kinetic theory of gases.) The collision result is computed from a standard 
centre-of-mass collision solution. Because the particles rotate as well as translate, two 
conditions are required to close the system of equations : one for the relative particle 
velocities normal to the particle surfaces at contact and the other for thc particle 
velocities tangential to the surface at  the contact point. The normal-velocity 
condition assumes that the particles are nearly elastic in the sense that energy is 
dissipated as a result of the collision but the particles involved do not deform. This 
is realized through a coefficient of restitution E ( B  < l ) ,  which is the ratio of thc 
approach-to-recoil velocities and is specified as an input parameter to the program. 
The tangential-velocity condition assumes that, on departure after a collision, there 
will be zero relative tangential velocity between the surface of the particles. This will 
be called a ‘fully rough’ surface condition, as i t  corresponds to an infinite surface- 
friction angle. (It should not be confused with the artificial rough-surface conditions 
used in kinetic-theory models of gases which do not dissipate energy. In this case, 
both the normal and tangential conditions result in energy dissipation.) On collision 
with a solid boundary, a particle recoils with the same relative speed with which it 
approached, and, at  the same time, assumes the same tangential velocity as the wall 
with no change to its rotational speed. This is essentially the same as the ‘type B ’  
wall boundary condition that was reported in Campbell & Brennen (1985a). It is used 
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here because i t  resulted in uniform velocity-gradient and density profiles and thus 
creates an ideal environment from which to study flow properties such as the stress 
tensor. 

3. The granular stress tensor 
The continuum stresses are a byproduct of the microscale mechanisms of momentum 

transfer within the material. For granular materials and hard-sphere models of gases, 
momentum is transferred in two modes. The ‘ streaming ’ or ‘kinetic ’ mode describes 
the transport of momentum as a particle moves through the material carrying its 
momentum with it. The ‘collisional’ mode, as the name implies, describes the 
transport of momentum by interparticle collisions. In  a collision momentum is 
exchanged between the two particles. The magnitude of the momentum exchange 
is the impulse associated with the collision which is carried a distance corresponding 
to the sum of the two particle radii in the direction of the line connecting their centres. 
Both mechanisms make important contributions to the stress tensor in a granular 
flow. Obviously, the streaming mode will dominate at low densities where collisions 
are infrequent and the collisional mode will be dominant at high densities as the 
particles cannot move far between collisions. 

The complete stress tensor is determined by summing the measured values for both 
the collisional and streaming contributions, each of which is determined in a manner 
to be described in $53.1 and 3.2. The results are shown in figure 2. The numerical 
values are verified by comparing the ~2~ and T&, components with the stresses exerted 
on the solid walls. The measured values for the off-diagonal stress-tensor components 
were found to be equal to within three significant digits. Thus no graph is plotted 
for the rY, component. As for all that are to follow, these results are scaled as: 

7; 
7 . .  = 

pp R2( U / H ) 2  ’ 

where T; is the original unscaled result. A simple dimensional analysis indicates that 
the resulting dimensionless stresses should be functions only of the particle coefficient 
of restitution E and some dimensionless measure of the particle packing, here 
represented as the solid fraction v. (For this flow geometry and boundary conditions, 
the scaled value T~~ is interchangeable withft, in ( l . l ) . )  Note that the normal stresses 
T,, and rYy are plotted as absolute values; except where noted, all of the normal 
stresses are negative (compressive stresses) and the shear stresses are positive. 

Also plotted are the predictions of Lun et al. (1984). As their results were derived 
for spherical particles instead of the cylindrical particles used in the simulation, the 
solid fraction is subject to different interpretation. (For the two-dimensional case, 
v is, in effect, a ratio of areas inst,ead of a ratio of volumes.) I n  particular, the 
maximum values of the solid fraction for which the material can be sheared are 
different in the two cases. To make an appropriate comparison, here, as in Campbell 
& Brennen (1985a), an  equivalent solid fraction is defined based on similar average 
particle spacing : 

where v* is the spherical-particle solid fraction (The results of the computer 
simulation for the stresses exerted on the sidewalls were shown by Campbell & 
Brennen (1985 a )  to  agree well with experimental results when the density was scaled 
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FIQURE 2. The complete dimensionless stress tensor as a function of the solid fraction v :  (a) T ~ ~ ;  

( b )  T ~ ~ ;  and (c) T ~ ~ .  The lines are derived from Lun et al. (1984). A, E = 0.4; 0, 0.6; 0, 0.8; 0, 
€ =  1.0. 
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FIGURE 3. The ratio T,/T, of streaming to colliuional contributions to the stress tensor as a function 
of the solid fraction u. The lines are derived from Lun et al. (1984). -, rx., T ~ ~ ;  --- 7xy. 

in this manner.) Also, on the suggestion of Savage (1984, personal communication), 
the pair distribution function used by Lun et al. (1984) has been replaced by 

1 
( 1  - (u*/u;))B”* ’ dv”) = (3.3) 

where uf is the maximum shearable solid fraction, here taken to be v z  = 0.52 
(urn = 0.78), a t  which point the particles are arranged in a square array. This is shown 
in Campbell & Brcnnen (1985a) tjo be the effective upper limit on the solid fraction 
that can still undergo a shearing motion. (Lun et al. originally used the pair 
distribution function found in Carnahan & Starling (1969) which predicted the 
necessary asymptotic behaviour a t  u = 1 .0 instead of the lower, more realistic, values 
allowed by (3.3).) No theoretical line is shown for E = 1.0 as there would then be no 
dissipation mechanism in the Lun et 0 1 .  theory to damp the random motions. (In the 
simulation, the fully rough particle surfwes always provide a dissipation mechanism.) 

Considering the difficulty of making such a comparison, there is remarkably good 
agreement between the measured and theoretical stresses. Each appears to asymptote 
to infinity both as u + O  and as the solid fraction approaches its maximum shearable 
limit a t  about u ,  = 0.78. The reason for the high-density asymptote is clear; beyond 
the shearable limit, infinite forces would be required to shear the material. The reason 
for the low-density asymptote is less apparent. Here the authors accept the reasoning 
of Lun et al. (1984) that, a t  such low densities, interparticle collisions are infrequent 
and the random particle velocities are not damped by the collisional inelasticity. This 
results in large random velocities and cwrrespondingly large streaming contributions 
to the stress tensor. 

This low-density asymptote is imposed by the streaming contribution and the 
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high-density asymptote is imposed by the collisional contribution. The importance 
of each contribution is shown in figure 3. The ratio T ~ / T ~ ,  where ‘ F ~  and T~ respectively 
represent the streaming and collisional stress-tensor contributions, varies over four 
orders of magnitude within the range of solid fractions studied. Moreover, the ratio 
appears t o  depend only on solid fraction ; no variation with B or the stress-tensor 
component can be ascertained from the data. The theoretical lines from Lun et al. 
(1984) are also plotted and predict a slight variation with 6 and the stress-tensor 
component. However, such variations are so small that they could easily lie within 
the data scatter. 

3.1. The streaming stress tensor 
The streaming portion of the stress tensor rS is a byproduct of the random, almost 
thermal, motion of the granules. By virtue of its motion, each particle transports its 
own momentum as i t  moves through the bulk material. From arguments presented 
in, for example, Chapman & Cowling (1970), the resulting contribution to the stress 
tensor is 

where the primed quantities indicate the instantaneous deviation from the appropriate 
mean-velocity component. The ( ) represents the average of the appropriate system 
properties, sampled at regular intervals, over a long period of system time - about 
2500 collisions per particle. (For more details about the averaging process, t’he reader 
is referred to Campbell 1982.) Each term of the stress tensor is determined by the 
formula 

(3.5) 

in exactly the same way as the Reynolds stresses. 
The similarity of (3.4) to  the Reynolds-stress tensor is no accident. Both reflect 

the momentum flux due to  random motion of the respective materials. The major 
differences are the physical motivation that lead to  the random movement and a 
technical one, that  ( ) represents an average over discrete samples. In  a granular 
material, the random motion is an unavoidable byproduct of interparticle collisions. 
The strength of the random motion generated during a collision will be proportional 
to the relative velocity of the particles before collision which, in an averaged sense, 
will be related to  the shear rate ( U / H )  within the bulk material. As energy associated 
with the random motion is dissipated by subsequent collisions, a continuous flux of 
energy down from the main shear flow is required to maintain the random velocities. 
Thus the magnitude of the random particle velocity should be related in some way 
to the shear rate. To illustrate this, i t  is convenient to  define a parameter 8: 

( P ’ O  = ( P d  - ( P )  (!?> 

2RU S = -  
HTi ’ 

where T = ( u ’ ~ )  + ( v ’ ~ )  +PR2(wt2) is a measure of the magnitude of the energy 
associated with random particle velocities. (Making an analogy with the thermal 
motion of molecules, T is often referred to as the ‘granular temperature ’.) S is plotted 
as a function of v in figure 4. Also plotted are the corresponding curves predicted by 
Lun et al. (1984). This comparison is somewhat questionable as the curve predicted 
by Lun et al. was derived for smooth spherical particles and compared with data from 
a simulation of rough cylindrical particles. I n  going from spherical to cylindrical 
particles, a component of temperature, associated with the out-of-shear-plane motion, 
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FIQURE 4. The dimensionless parameter S (equation (3.1.3)) as a function of the solid fraction v. 
The lines are derived from Lun P t  al. (1984). Symbols as in figure 2. 

is lost, but, a t  the same time, the rough particle surfaces add a temperature component 
due to the random rotational motion. Thus the comparison with Lun et al. is only 
strictly valid if there is cyuipartition of energy between the out-of-plane translation 
and the rotational modes. The validity is affirmed only by the relatively close 
agreement between the prediction and the simulation results. 

Figure 5 shows the streaming contribution to the stress tensor. As expected, it is 
large for small values of the solid fraction, first decreasing rapidly and then levelling 
off with v. This is in accord with the predictions of Lun et al. (1984). But then a curious 
thing happens. As the shearable packing limit is approached, the component again 
drops rapidly. Similar behaviour is observed in the normal stress components, but 
only for the E = 1 .O measurements. For smaller values of v the T,, component remains 
roughly constant, as predicted by Lun et al., while the rYy components rise gently. 
No physical explanation for this phciiomenon is immediately apparent ; however, i t  
is a moot problem, as it occurs only in the region where the collisional contribution 
is dominant. 

3.2. The rolli.siona1 stress tensor 

At high densities, the majority of the momentum transfer will be accomplished 
through interparticle collisions. A diagram of the collision analysis is shown in 
figure 6. Each collision imparts an impulse, the strength of which depends on the 
relative motion of the particles before collision. The impulse exerted a t  collision is 

(3.7) 

where q = u1 - u2 is the relative velocity of the particles just before collision, o1 and 
o2 their respective rotation rates (for 2-D flows, W ,  and w2 are always oriented 
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FIGURE 5. The streaming contribution to the stress tensor as a function of the solid fraction: (a)  
7,,,; ( b )  7,,#; (c) 7syy. The lines are derived from Lun et al. (1984). Symbols as in figure 2. 
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FIGURE 6. Diagram for the collision analysis. 

perpendicular to  the shear plane), k = (xl - x2)/ (1 x1 - x2 (1 is the unit vector pointing 
along the line connecting the particle centres directly at collision, and /3 is the square 
of the ratio of the particle radius of gyration to the particle radius (/3 = 0.5, the value 
appropriate for cylinders, is used throughout this work). 

As the collisions are instantaneous, each collision results in an instantaneous 
momentum exchange of strength Jbetween the two particles. From a transport point 
of view, the effect of a collision is the transport of J momentum a distance 2R in the 
direction k. The effective force exerted by the collision, on a surface separating 
the particles, is 2RJk*n, where n is the vector normal to the surface. The portion of 
the stress tensor T~ that  is due to intcrparticle collisions is thus given by 

T? = 2R[Jk], (3.8) 

where [Jk] is found by summing the dyadic product J k  for every collision and then 
normalizing the result by dividing by the system volume and the length of the 
averaging period. (Physically the ] average should be interpreted in the same way 
as the ( ) average multiplied by the collision rate.) 

The collisional contribution to the stress tensor is plotted in figure 7 as a function 
of the solid fraction v. There is nothing surprising here. The measurements increase 
steadily with solid fraction and diverge asymptotically near the shearable limit. 
Compared with the streaming measurements, the values appear to  make up the 
high-density half of the complete stress-tensor curves. Also shown are the predictions 
of Lun et aE. (1984) for smooth spheres and the more recent work of Lun & Savage 
(1985) who analysed the collisional stress tensor for rough spheres. It should be noted 
in comparing these two theories that Lun & Savage’s is derived from the earlier and 
less exact calculations of Jenkins & Savage (1983) rather than the more exact 
treatment used in Lun et al. (1984) and, furthermore, takes no account of the 
streaming contribution to the stress tensor. 

The collision impulse given in (3.7) may be divided into three parts: that due to  
the relative motion of the particles normal to the particle surface at the contact point; 
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FIGURE 7 .  The collisionat contribution to the stress tensor as a function of the solid fraction v :  ( a )  
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that  tangential to the surface at the eontact point; and the particle rotations. Each 
part of the impulse makes its own contribution to  the collisional stress tensor. That 
due to the normal component of velocity a t  collision is 

T; = mR( 1 + E )  [ (q 'k)  kk], (3.9) 

that due to the relative velocity tangential to  the surfaces a t  the contact point is 

and that due to  the particle rotations is 

(3.10) 

(3.11) 

The three constituents of the collisional stress tensor are plotted in figure 8 as 
functions of the solid fraction v. (Note that, in this plot, the signs of the components 
are explicitly stated in the legend as the constituents may make contributions of 
differing sign to each component.) The major contribution to the collisional stress 
tensor comes from 7;. Except for extremely low densities, the tangential and 
rotational contributions have almost the same magnitude, which is at least an order 
of magnitude smaller than thf: normal contribution. Note also that, while the 
magnitudes of the rotational and tangential contributions are identical in the normal 
stresses r,, and ryy, the signs of the contributions have changed. That is, the 
tangential portion of the collisional stress tensor contributes a compressive stress to 
T,, and a tensile stress to ryy. The opposite is true for the rotational portion. 

Note that individually the tangential and rotational components, as described by 
(3.10) and (3.11), are proportional to dyadic products of perpendicular vectors and 
must necessarily make asymmetric contributions to the stress tensor. In  a continuum, 
the stress tensor must be symmetric in order to assure rotational equilibrium of 
material elements. However, in a granular flow, the granules can and do have a 
rotational velocity and the appearance of asymmetry in the stress tensor works to  
change the average rotational state of the particles. After steady conditions have been 
reached, there cannot, on the averagr, be unbalanced torques on the particles. Thus, 
in the converged state, the stress tensor must be symmetric. This is the case observed 
in the simulation. Note that the rotational stress tensor depends on the sum of the 
rotational velocities o, and o2 and not on their difference. Thus the mean rotational 
speed of the particles will accelerate until the asymmetric contribution from the 
rotational stress tensor cancels the asymmetric contribution from the tangential 
stress tensor (which in the average sense is dependent on the shear rate U / H ) ,  and 
produces a symmetric result. This can be seen by comparing the rZy and ryX plots 
of figure 8. Note that the sign of thc rotational contribution has changed and that 
the magnitude of the tangential component is significantly smaller in the ryx plot than 
in the rXy  plot. 

I n  order to symmetrize the stress tensor, the average rotational speed of the 
particles converges to a well-defined value that is constant across the flow. This is 
plotted in figure 9 as a function of the solid fraction v. As would be expected from 
both dimensional and physical reasoning, the rotation rate is proportional to the shear 
rate U / H  and, over much of the range of solid fraction, (w>  = -0.5( U / H ) .  Towards 
the shearable limit, however, I wH/C' I decreases rapidly. Campbell & Brennen (1985~)  
show that a distinct layered microstructure develops in the flow as this limit is 
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FIGURE 8. The normal, tangential and rotational constituents of the collisional stress tensor as 
functions of the solid fraction v :  (a) T = ~ ,  (b )  T,~. (c) T ~ ~ ,  ( d )  T ~ ~ ;  E = 0.8. 

approached; in order to maintain the shear flow, the material is forced to form itself 
into layers parallel to  the flow direction, each layer of particles moving with the 
appropriate velocity corresponding to its position in the shear flow. The layering 
limits the angles a t  which collisions between particles can occur. Some preliminary 
unpublished calculations along the lines of Savage & Jeffrey (1981) indicate that this 
observed reduction in I wH/UI is one byproduct of the microstructure formation. 
Notice that no points are plotted for v < 0.1. At very small v ,  the rotation does not 
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FIGURE 9. The scaled average rotation rate w H / U ,  as a function 
of the solid fraction 1 ’ .  Symbols as in figure 2. 

U 

converge to any constant value. This is not surprising as the rotational control 
described above is a byproduct of particle collisions, which would be infrequent a t  
such small solid fractions. Furthermore. i t  explains why the rotational contribution 
to  the collisional stress tensor, as show11 in figure 8, becomes insignificant for small 
solid fractions. 

3.3. The friction coefirirrit and normal-stress differences 
A standard soil-mechanics test is to shear a static soil sample and to measure the 
friction coefficient, or ratio of shear-to-normal forces rzy/rYy a t  which the sample 
yields. The results show that the friction coefficient increases the more densely the 
sample is initially packed. Savage K.  Sayed’s (1984) experimental studies of fully 
developed granular flows show exartlj the opposite to be true; the friction coefficient 
was seen to decrease with increasing solid fraction. Similar observations were made 
in the computer simulation of Camplwll & Brennen (1985a)  and were attributed to 
anisotropies in the collision-angle distribution induced by the formation of the 
layered microstructure. The results of the present study, shown in figure 10, indicate 
that this is only part of the story. 

The friction coefficient for the complete stress tensor is plotted in figure 10 ( c )  and 
shows the decrease in friction coefficient with solid fraction that was described above. 
The effect is much more pronounccd fbr the lower coefficients of restitution than for 
the larger. In fact, the points corrchponding to E = 0.8 and E = 1.0 appear to be 
constant over much of the range of d i d  fraction. Along with the data points are 
plotted the predictions of Lun et al. (1984). As the rough particle surfaces could 
significantly affect the behaviour of the friction coefficient, also plotted is the 
corresponding curve derived from a iniscegenative hybrid formed by mating the 
streaming stress tensor of Lun et al. (1984) and the rough-particle collisional stress 
tensor of Lun BE Savage (1985). Both theoretical curves deviate strongly from the 
measurements toward the larger solid fractions. 
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FIGURE 10. The friction coefficient 7 /7yy as a function of the solid fraction u :  (a) collisional 
contribution, ( b )  streaming contribution and (e) complete stresses; ----, Lun & Savage (1985) 
hybrid. Other symbols as in figure 7. 

?Y 

Figures 10(a) and (b )  break up the friction coefficient into its collisional and 
streaming parts. Surprisingly, the major reduction in friction coefficient is found in 
the streaming and not in the collisional contribution to the stress tensor and thus 
cannot be directly attributed to the microstructure formation. The behaviour of the 
streaming component is very accurately predicted by Lun et al. (1984). The collisional 
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FIGURE 11. The ratio of the normal stresses r,,/ryy as function of the  solid fraction u :  (a )  collisional 
contribution, ( b )  streaming contribution. and ( c )  complete stresses. Symbols as in figure 2. 

friction coefficient actually rises for small values of the solid fraction exactly as 
predicted by Lun et al. However, the collisional friction coefficient for the larger 
coefficients of restitution level off to a constant value, while the smaller decrease as 
the shearable limit is approached. This behaviour can be attributed to the develop- 
ment of the layered rnicrostructurc. The deviation from the Lun et al. curves is 
to be anticipated here as that theory makes no provision for the microstructure 
development. 

All of the theories described so far (Savage & Jeffrey 1981 ; Jenkins & Savage 1983; 
Lun et al. 1984; and Lun & Savage 1985) predict that the in-the-shear-plane normal 
stresses T,, and rYY should be identical while the out-of-shear-plane normal stress 
T,, is somewhat smaller (T%% is, of course, irrelevant to the present two-dimensional 
study). The current results, plotted in figure 11, show that T,, can be significantly 
greater (by up to a factor of 5 )  than especially for smaller solid fractions and 
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coefficients of restitution. As the shearable limit is approached, the differences almost, 
but not entirely, disappear. The major contributor is once again the streaming stress 
tensor, but the effect of the collisional contribution is not insignificant. (Anomalous 
behaviour is found a t  dense packings in the E = 1 .O results, for which the ratio 7,,/7yy 

is observed to increase dramatically near the shearable limit.) Some understanding 
of this effect can be found in figure 8. As noted previously, the tangential and 
rotational contributions makes contributions of equal magnitude but opposite sign 
to 7,. and rYv. But as the magnitude of the tangential contribution is larger in both, 
the combination increases the magnitude of 7,. relative to rYy. 

4. Conclusions 
The stress tensor in a two-dimensional granular shear flow has been investigated 

using a computer simulation. Two mechanisms of momentum transfer combine to 
make up the complete stress tensor. The streaming mode, by which momentum is 
carried by the random motion of particles through the bulk material is dominant for 
loosely packed materials. The collisional mode, whereby momentum is transferred 
by interparticle collisions, becomes dominant as the material becomes densely 
packed. The dimensionless stress given by (3.1) is seen to asymptote to infinity both 
as v approaches the shearable limit (a result of the collisional mode) and as v goes 
to zero (a result of the streaming mode). This behaviour is in accord with the 
predictions of Lun et al. (1984). The collisional stress tensor is broken up to reveal 
the individual effect of the normal relative velocity of the particles at collision, the 
tangential relative velocity of the particles at collision and the rotation of the 
particles. The normal contribution is by far the most important conveyer of 
momentum. However, the tangential and rotational contributions individually 
produce asymmetric stress tensors, but combine t,o yield a symmetric result. This is 
accomplished by fixing the mean rotational speed of the particles to a value of about 
one half the mean-shear rate throughout most of the range of solid fraction. The 
material friction coefficient is a decreasing function of the solid fraction. This 
behaviour is shown to be a combined effect of the streaming and collisional modes. 
Finally, normal-stress differences are observed, an effect that decreases toward the 
shearable solid-fraction limit. 

Professor Richard Kaplan was instrumental in providing the computer facilities 
used to carry out this investigation. Without his assistance, the quality of these 
results would have been severely hampered. The authors are most grateful for the 
support provided by the USC Faculty Research and Innovation Fund and the 
National Science Foundation under the Presidential Young Investigator Award 
program, grant number MEA-8352513. Special thanks to Dr George Lea and 
Professor Christopher Brennen. 
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